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Abstract

In intervention studies, it is important to assess whether one program might be more

effective for individuals with extreme initial difficulties, while another might be more

effective for individuals with less extreme initial difficulties. In settings where we obtain

time-series data for each person, this entails examining interactions between treatment

and initial status on rates of change. In this report, we illustrate a fully Bayesian
approach to studying interactions of this kind in the Hierarchical Modeling (HM)

framework. This approach provides data analysts with a number of important
advantages, including the ability to handle situations in which the number and spacing

of time-series observations varies substantially across individuals, and the ability to

obtain robust estimates of parameters of interest. Various extensions of our approach are

discussed in detail.

Many key questions in educational research, and in social and
behavioral research more generally, entail measuring and studying
change. In this connection, growth modeling techniques provide a
valuable means of studying patterns of change over time (see, for
example, Bryk & Raudenbush, 1987; Muthen, 1991).

Key substantive questions in studies of change often center on
relationships between where individuals start (e.g., their initial status) and

how rapidly they progress (e.g., their rates of change) (see Muthen &
Curran, 1997; Khoo, 1997; Blomqvist, 1977). For example, in studying the

effectiveness of two remedial reading programs over time, it becomes

important to consider whether one program might be more effective for

students with extreme reading difficulties, while the other program might
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be more successful in the case of students with milder initial reading
difficulties. Thus, among students with extreme reading difficulties, rates
of progress may be more rapid for students in Program A, whereas among
students with milder difficulties, rates of progress may be more rapid for
students in Program B (see Figure 1). We term phenomena of this kind
Initial Status x Treatment interactions.
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Figure 1. Growth Trajectories for Scenario A
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As a second example, consider studying change in outcomes of
interest in the context of large-scale educational surveys. In analyses of

data from the National Longitudinal Survey of Youth (NLSY), for
example, interest might center on how differences in initial status in anti-
social behavior (ASB) relate to differences in rates of change in ASB: How

much of a change in ASB growth rates do we expect when initial status
increases 1 unit? Furthermore, interest might also center on how

differences in various demographic characteristics (e.g., gender) and home
environment factors, for example, correlate to differences in rates of
change in ASB. It may well be the case that the effects of these factors
depend crucially on (i.e., interact with) initial status.

Specifying models to address questions of this kind in essence
implies modeling individual growth rate parameters (7w) as a function of

individual initial status parameters (my). Thus, for example, questions
centering on Initial Status x Treatment interactions imply models for
growth rate parameters of the following general form:

7th = f (iroi , TRTi, ltOi x TRTi ) (1)

2
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Viewing individual growth parameters as latent variables, the use
of noi as a predictor of TM moves us into the arena of latent variable

regression. While statistical analyses commonly are conducted using
fallible measures of constructs of interest, a hallmark of Structural
Equation Modeling (SEM) is that it provides a framework for specifying
relationships among latent variables. As such, SEM provides an approach
to growth modeling that enables us to employ initial status parameters as
predictors of growth rates. SEM can be readily applied in settings in
which we wish to specify Initial Status x Treatment interactions (e.g., 7C0i X
TRTi, where TRTi is a 0/1 indicator variable), as well as situations in which
interactions between 710i and other predictors of growth are not specified

(e.g., ni; = f (TCOI , TRT;)).
One limitation in current implementations of SEM is that our data

must be time-structured. Thus, for example, the series of ages at which
children in a developmental study are observed must be similar across
children.

A second limitation that is less germane to the focus of this article is
that it is not possible in standard implementations of SEM to specify
interactions between initial status and continuous predictors of change.

For example, consider an intervention study in which a key
implementation variable is measured on a continuous scale. In settings of
this kind, one would not be able to study interactions between initial
status and implementation on rates of change.

In contrast to SEM, the hierarchical modeling (HM) framework can
easily handle data sets that are not time-structured, i.e., settings in which
the number and spacing of time series observations may vary across
individuals. But unlike SEM, latent variable regression is not a hallmark
of the HM framework.

In an important extension of the HM framework, Raudenbush and
Sampson (1999) present a strategy for incorporating latent variable
regressions into HMs. This strategy has been implemented in the latest
release of the HLM software program. In its current implementation, this
strategy enables one to employ initial status as a predictor of growth rates,
but only in settings in which interactions between initial status and other
predictors of change are not specified. A potentially valuable application
of this approach would be intervention settings in which assignment to
treatment and comparison groups is not random. One could, using this
approach, study the effects of treatment on rates of change holding
constant initial status (e.g., 'NV = f (noi , TRT)). Rather than adjusting with
respect to observed outcome scores at time 1, which contain measurement
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error, the adjustment would be based on a latent variable. Note that
models of this kind can be fit readily via SEM.

In principle, the strategy presented by Raudenbush and Sampson
could be extended to settings in which we wish to specify Initial Status x

Treatment interactions. This would require the specification and
estimation of separate variance-covariance matrices for the treatment and

comparison groups. However, Raudenbush and Sampson's approach
entails transforming ML estimates of variance components and fixed
effects in standard HMs. As such, it appears that this strategy could not
be extended to settings in which we wish to specify interactions between
initial status and continuous predictors.

In fitting statistical models under normality assumptions, results

are potentially vulnerable to outlying cases. Thus point estimates and
standard errors for coefficients in latent regression models in both the
SEM and HM frameworks may be non-robust to outlying individuals
(e.g., a person whose rate of growth is unusually rapid). In addition, both
the SEM framework and the strategy outlined by Raudenbush and
Sampson, inferences are based on large-sample theory. Thus the use of
these approaches in growth modeling settings in which the number of
individuals is small or moderate may not be prudent.

In this paper, we present a fully Bayesian approach to latent
variable regression in the HM framework. This approach entails
calculating marginal posterior distributions of interest via a key Markov
chain Monte Carlo (MCMC) technique, i.e., the Gibbs sampler. Our
approach has the following strengths. First, it can be used to analyze data

that are not time-structured. Secondly, it enables one to specify Initial
Status x Treatment interactions. Third, it enables one to employ t
distributional assumptions at any level of the HM, which has the effect of
downweighting outliers. Note that the term outliers as used here refers
both to outlying time-series observations (e.g., a time-series observation
for an individual that is unusually high or low given the overall trend in
that person's data), and to outlying individuals (e.g., a person whose rate
of change is unusually rapid or slow in relation to other individuals).
Fourth, inferences in the approach that we employ are not based on large-

sample approximations. Fifth, rather than transforming estimates of fixed

effects and variance components in standard HMs to obtain estimates of
coefficients in latent variable regressions, our approach entails estimating

these coefficients directly. This makes possible a number of useful
modeling extensions which we discuss at the end of our paper (e.g.,
interactions between initial status and continuous predictors of growth).

4



Our fully Bayesian approach to latent variable modeling in the HM
framework can be easily implemented using the software program BUGS

(Spiegelhalter et al., 1996a), which is a near acronym for "Bayesian
analysis Using the Gibbs Sampler". We illustrate our approach through
analyses of the data from a randomized trial comparing two forms of
short-term psychotherapy (see Svartberg, Seltzer & Stiles, 1998). The

implications of our approach for the study of educational interventions
and for constructing educational indicators are discussed at the end of our

paper.

Illustrative Example

Background

From . a pool of 20 individuals referred for short-term
psychotherapy, 10 were randomly assigned to a directive, psychodynamic
form of therapy termed STAPP, and 10 were randomly assigned to a non-
directive form of therapy (NDP) (see Svartberg et al., 1998). A key
outcome of interest in this study is level of client distress as measured by

an instrument termed the Symptom Checklist-90 (SCL-90; Derogatis,

1977). Note that on the SCL-90 scale, scores between 0 and 0.20 indicate

that an individual is asymptomatic; scores between 0.20-0.40 indicate

mild levels of distress; scores between 0.40-1.00 indicate moderate levels

of distress; and scores exceeding 1.00 indicate severe symptomology.

Efforts were made to measure levels of distress at multiple points in time:

immediately prior to the start of treatment, after 10 sessions, at

termination, and 6, 12 and 24 months after termination. In our analyses,

we focus on SCL-90 scores from the pre-intervention, 10-th session, and
termination measurement occasions. See Svartberg et al. (1998) for a set of

analyses that includes the post-intervention time points.
For both groups, treatment was to last for 20 sessions. However,

for ethical reasons, treatment was prolonged in the case of one client for 32

sessions (client 9). This patient was assessed pretreatment, and at sessions

10, 20, and 32. In addition, one patient had only 14 sessions (client 2), and

was assessed pretreatment and at sessions 10 and 14.
As in Svartberg et al. (1998), the carrier of time in our analyses of

change is measured in units of months: MONTHti, where MONTHti

captures the number of months that have elapsed since the start of
treatment for person i at measurement occasion t. Due to cancellations,

5



changes in schedules, patient and therapist vacations, and extensions of
treatment in the case of 1 patient, MONTHH takes on 57 different values
ranging from 0.00 to 17.8 months, where 0.00 is the time-value
corresponding to the pre-intervention measurement occasion. Thus the
spacing between time-points varies considerably across patients. In
addition, the duration of treatment ranges from 4.8 to 17.8 months. The
average duration and median duration of treatment take on values of
approximately 9 months and 8.8 months, respectively.

10
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Figure 2A. Individual Growth Trajectories
for StAPP Patients

Figure 2B. Individual Growth Trajectories
for NDP Patients

The trajectories of SCL-90 scores for the clients in the STAPP group
and the clients in the NDP group are displayed in Figures 2a. and 2b.,

respectively. Note that at the outset, virtually all patients have SCL-90

scores that indicate moderate or high levels of distress. A key feature of
these trajectories is that in general, SCL-90 scores tend to decrease over
time in a fairly linear fashion. Three exceptions to this pattern are the
trajectories for clients 9, 17 and 19.

We will first fit a growth model without latent variable predictors
to the data in order to examine overall differences between STAPP and
NDP patients in their initial status and rates of change. We will then
employ initial status as a predictor of change and assess differences
between STAPP and NDP patients in their rates of change holding
constant initial status. Finally, we will examine whether the relative

6 1 0



effectiveness of STAPP and NDP on rate of change interacts with initial

status.

Model I

We begin by specifying the following level-1 (or within-child)

model:

Yri = itoj + itliMontha + Eti Eti N (0, a2), (2)

where Yt, represents the SCL-90 score for individual i (i=1, ...., 1) at

measurement occasion t (t=1, Ti), and MONT}Iti captures the number
of months that have elapsed since the start of treatment for person i at

measurement occasion t. In this model, TrAi represents the SCL-90 status

for person i at the start of treatment (i.e., initial status), and 'Eli is the rate of

change during treatment for person i. The EH (i.e., the level-1 residuals) are
assumed normally distributed with mean 0 and variance a2.

We now pose the following level-2 (or between-child) model:

no; = fioo + (3oi TRTi + Uoi

= 3io + 1311 TRTi + Uii

Uoi N (0, Too)
Liu N (0, Tn), (3)

where TRTi = 0 if client i receives the STAPP treatment, and TRTi=1 if

client i receives the NDP treatment. By virtue of this coding scheme, 13oo

represents the expected initial status for STAPP patients, and 130i captures

the overall difference in initial status between NDP and STAPP patients.

Although random assignment was employed in this study, the number of

patients in each group is small. Thus results for 1301 provide us with a

check on the comparability of patients in the two treatment groups.
Turning to the level-2 equation for growth rates, 1310 represents the

expected rate of change in SCL-90 scores for STAPP clients, and 1311

captures the overall difference in rates of change between NDP and

STAPP patients. The Uoi and lin are level-2 residuals (i.e., random effects)

assumed normally distributed with mean 0, and variance TOO and tn,

respectively. Note that TOO captures the variance in initial status that
remains after taking into account treatment group membership. Similarly,

captures the residual variation in growth rates. Furthermore, Cov(Uoi,

Liu) = tol, where Tol is the covariance between initial status and rate of
change for patients within each of the treatment groups.

7



Estimation

One widely used approach to estimation and inference for HMs is

termed full maximum likelihood. This entails jointly estimating the fixed
effects and variance components in an HM via maximum likelihood.
Asymptotic standard errors are based on the Fisher information matrix. A
second commonly used approach entails computing maximum likelihood
estimates of the variance components in a given model, which is termed
restricted maximum likelihood (REML) estimation. Generalized Least
Squares is then used to obtain estimates and standard errors for the fixed

effects. In this step, the variance-covariance parameters in the HM are set

equal to their REML estimates.
In growth modeling settings in which the number of individuals is

small, the above approaches can result in underestimates of uncertainty
(e.g., standard errors that are too small), and point estimates that may
constitute poor summaries of the data (see, e.g., Draper (1995), Rubin
(1981) and Seltzer, Wong & Bryk (1996)). Note, however, that with respect
to hypothesis tests for fixed effects, the HLM program employs critical
values based on the family of t distributions. With the exception of
settings in which datasets are highly unbalanced, this approach will tend
to provide appropriate rejection rates.

The fully Bayesian approach entails basing inferences on the
marginal posterior distributions of parameters of interest (e.g., p(f3ii I y)).

Such an approach involves specifying prior distributions for all unknowns

in one's model. To obtain the marginal posterior distribution of a
particular parameter, one must integrate over all other unknowns in one's
model. Thus, for example, p(1311 I y) would provide us with a summary of
the plausibility of different values for p(On I y) given the data at hand and

any available prior information. The mode, median and mean of p(On I y)

would provide us with various point estimates for Vni and the .025 and
.975 quantiles of this distribution would provide us with the Bayesian
analogue of a confidence interval.

An advantage of the fully Bayesian approach is that it provides a
general strategy for drawing inferences concerning a parameter of interest

in a manner that takes into account the uncertainty connected with all
other unknowns in one's model. For example, in drawing inferences
concerning 1311, integrating over the variance components as well as all
other unknowns in effect propagates the uncertainty concerning these
parameters into p(On I y) (see, e.g., Draper (1995), Rubin, 1981, and Seltzer

et al. (1996)).



Calculating marginal posteriors of interest has until recently been
intractable in all but the simplest HM settings. However, MCMC
techniques (e.g., the Gibbs sampler) now make such an approach feasible
in a wide range of complex modeling settings (see, e.g., Carlin & Louis,
1996; Gelfand, Hills, Racine-Poon & Smith, 1990; Gelman, Carlin, Stern &
Rubin, 1995; Seltzer et al., 1996; Spiegelhalter et al., 1996b, 1996c; Tanner,
1996). As will be seen, MCMC can be used to obtain marginal posteriors
of interest in HMs in which level-1 parameters (e.g., noi) are employed as
predictors at level-2, and in which t distributional assumptions are
employed at any level of the model. Rather than transforming ML
estimates of variance components and fixed effects in standard HMs to
obtain estimates of coefficients in latent variable regressions, a distinct
advantage in using MCMC is that these coefficients can be estimated
directly. This makes possible a number of important extensions of our
approach, which will be discussed at the end of our paper.

We used the software package BUGS to carry out all of the fully
Bayesian analyses presented in this paper. BUGS, which is freely
available via the Web, provides a relatively easy means of implementing
the Gibbs sampler in a wide array of modeling settings. We ran the BUGS
package on a Pentium II 400mhz PC. For each analysis, less than 15
seconds of CPU time were required to complete 10,000 iterations of the
Gibbs sampler.

To diagnose possible convergence problems, for each analysis we
ran multiple chains of the Gibbs sampler using different starting values
and seeds, compared results based on the output from each chain,

inspected trace plots, and examined Raftery-Lewis statistics. These
procedures failed to identify any convergence problems. Note that trace
plots, Raftery-Lewis statistics and a number of other useful convergence
diagnostics can be obtained using a suite of programs called CODA (Best,
Cowles & Vines, 1995), which has been made available by the developers
of BUGS. Like BUGS, CODA is also freely available via the Web. To help
ensure results with high degrees of accuracy, we employed a bum-in
period of 2,000 iterations, and used the output from 60,000 subsequent
iterations of the Gibbs sampler to simulate marginal posteriors of interest.

We specified diffuse priors for the fixed effects in our models. For
example, in the case of the fixed effects in Model I, we employed
independent normal priors with means of 0 and extremely low precision.
Note that in BUGS, one routinely works with precisions (e.g., 1/a2, T-1)
rather than variances (a2, T). The approach that we used to specify priors
for precision parameters parallels the approach employed in papers by
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Seltzer et al. (1996), Seltzer, Novak, Lim and Choi (2001), and Seltzer and
Choi (in press) for specifying diffuse priors for variance components.

Results for Model I

As can be seen in Table I, the marginal posterior mean of (300 takes

on a value of 0.87, which falls just below the lower boundary of the high
distress category. T'he mean of the resulting marginal posterior
distribution for Poi (i.e., the expected difference in initial status between
NDP and STAPP patients) is slightly under a tenth of a point, and the 95%

interval based on this distribution comfortably includes a value of 0.
Thus, on average, the NDP and STAPP patients appear to be fairly similar

in terms of initial levels of distress.

Table I: Marginal Posterior Distributions for the Fixed Effects and Variance Components

in Model I.

Mean SD 95% Int. Median Prop.>0

Fixed Effects :

Model for Initial Status (nn)

STAPP (Poo) .874 .138 ( .596,1.145) .875 1.000

NDP/STAPP Contrast (NI) .088 .197 (-.305, .477) .090 .681

Model for Rates of Change (nli)

STAPP (010) -.070 .020 (-.109,-.032) -.070 .000

NDP/STAPP Contrast (in) -.002 .026 (-.053, .049) -.002 .473

Variance Components :

Within-Person Error (02) .060 .017 ( .035, .100) .057

Random Effects Variance
for Initial Status (Too) .149 .065 ( .063, .308) .136

Random Effects Variance
for Rates of Change ('ril) .002 .001 ( .001, .004) .002

Coy. between Init. Status
and Rates of Chagne(Tn) -.007 .006 (-.022, .002) -.006 .074

Correlation between Initial
Status and Rates of Change

[Tol / [ T001/2 X T111/2 ]) -.407 .253 (-.797, .173) -.443 .074

1 4



Turning to the results for the fixed effects in the level-2 equation for

growth rates, we see that marginal posterior mean for 1310 takes on a value

of -0.07, and that the 95% marginal posterior interval excludes a value of 0.

The value -0.07 suggests that on average, we expect to see a 0.07 decrease

in a patient's SCL-90 score for each month of treatment that elapses. The
results for 13n suggest a negligible difference in rates of improvement
between NDP and STAPP patients. Note that the posterior mean for pi, is

close to a value of 0, and that the value (3n = 0 falls near the center of the

95% marginal posterior interval.
In terms of results for the variance-covariance components in the

model, the results for 'col are of particular interest. Note that approximately

92% of the mass of the marginal posterior distribution for 'col lies below a

value of 0, thus providing some evidence (albeit modest evidence) of a
negative relationship between initial status and rate of change (e.g., clients

with high initial status values tend to exhibit more rapid rates of decline in

their SCL-90 scores). (Note that the colunm in Tables I, II and III labelled

"Prop. > 0" denotes the proportion of values among the set of 60,000
values generated for a parameter that exceed a value of 0. These

proportions constitute highly accurate estimates of posterior
probabilities.) In using MCMC techniques, one can also readily obtain the

marginal posterior distributions of parameters that are combinations of
other parameters in one's model. Thus using values generated in M cycles

of the Gibbs sampler to simulate marginal posteriors of interest, and
setting M to a large value, the empirical distribution of the values T10(0/[

To 0'12w TO2(0] (i=1,...., M) provides us with an accurate approximation of the

marginal posterior distribution of the correlation between initial status

and rate of change for patients within the two treatment groups. As can be

seen in Table I, the mean of the resulting posterior takes on a value of
approximately -0.41, and over 92% of the posterior lies below a value of 0.

Model II

Though the results for Model I point to very little difference in

initial status between STAPP and NDP clients, we now employ initial
status (im) as a latent variable predictor in the level-2 equation for growth
rates. This will enable us to illustrate a potentially important use of initial

status as a latent variable predictor of change in intervention settings, i.e.,

assessing the relative effectiveness of interventions on rates of change
holding constant initial status.

11 1 5



We now pose the following latent variable regression HM. We
employ the same level-1 model as in Equation 2. At level-2, we specify the

following model:

no; = Poo + Uoi

= 3io + 3ii TRTi + bizoi + Uu

Uoi N (0, Too)
Ulf N (0, T11). (4)

In the first equation in the level-2 model, the individual initial status
parameters are modeled as a function of a grand mean (i.e., 1300). The

random effects in the first equation now represent deviations in initial
status from the grand mean (i.e., Uoi = noi Poo), and Too captures the
variance in the nix around the grand mean.

Note importantly that in contrast to Model I, 7roi now appears as a
predictor in the level-2 equation for rates of change. In this model, (311

represents the expected difference in rates of change between NDP and
STAPP patients holding constant initial status. The parameter b is the
regression coefficient for the latent predictor noi. b is a pooled slope for
patients in the NDP and STAPP treatment groups that captures the
expected change in growth rate when initial status increases one unit.

The parameter Pio represents the expected rate of change for a
STAPP patient (i.e., TRT1= 0) with an initial status value of 0. To give flo a
more meaningful interpretation, we can center 7Loi around the grand mean
for initial status as follows:

7ty = io + 13n TRTi + b(n0i - (300) + LIij Liu N (0, Tn). (5)

In this model, (310 now represents the expected rate of change for a STAPP
patient whose initial status value is equal to the grand mean.

The variance parameter in the level-2 equation for growth rates
(i.e., TO represents the amount of variance in growth rates that remains
after taking into account initial status and treatment group membership.
Since we are conditioning on initial status in the level-2 model for growth
rates (i.e., iti I itOi, TRTi ), we assume that Cov(Uoi, Uu) = 0. Assumptions of
this kind are made routinely in the SEM growth modeling framework in
settings where initial status is employed as a predictor of rates of change.

1 6

12



Table II: Marginal Posterior Distributions for Fixed Effects and Variance Components in

Model II.

Mean SD 95% Int. Median Prop.>0

Fixed Effects :

Model for Initial Status (nn)

100 (.715, 1.108) .912 1.000Grand Mean (PH) .913

Model for Rates of Change (nii)

STAPP (Plo) -.071 018 (-.107,-.036) -.071 .999

NDP/STAPP Contrast (13I) .004 020 (-.035, .043) .004 .572

Init. Status Effect(b) -.067 035 (-.130, .007) -.069 .034

Variance Components :

Within-Person Error (a2) .061 .017 (.035, .102) .058

Random Effects Variance for

Initial Status (Too) .149 .067 (.064, .307) .137

Random Effects Variance for

Rates of Change (Tn) .0010 .0006 (.0003,.0024) .0009

As can be seen in Table II, the resulting posterior mean for the
NDP/STAPP difference in growth rates holding constant initial status is
extremely close to a value of 0. We also see that the marginal posterior
mean for b takes on a value of -0.067, which implies that a 1 unit increase

in initial status implies a decrease in rate of chnge in SCL-90 scores (i.e., a

more rapid decrease in distress) of 0.067 units per month. While a value

of 0 lies within the upper boundary of the 95% interval for b, note that
only approximately 3.4% of the mass of the posterior lies above a value of

0. Results for Pio imply an expected rate of change of -0.071 for a STAPP

patient with an initial status value equal to the grand mean.

Model III

The above analyses point to the conclusion that th effects of

STAPP and NDP on rates of change in SCL-90 scores do not differ.
However, when we examine the observed SCL-90 trajectories for STAPP

and NDP patients, we see that rates of change among the STAPP patients

tend to be fairly similar regardless of where patients start, i.e., irrespective
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of their pre-intervention SCL-90 scores (see Figure 2a). In contrast, in
Figure 2b we see that NDP patients with high pre-intervention scores tend

to exhibit rapid decreases in distress, while those with relatively lower
pre-intervention scores tend to progress at substantially slower rates. This
suggests that NDP may be more effective for patients with high initial
levels of distress while STAPP may be more effective for patients with
moderate initial levels of distress.

To investigate this possibility we expand Equation 5 to include an

Initial status x Treatment interaction term:

7toi = 13oo + Lloi Uoi N (0, Too)

Tchi = 1io + 1311 TRT; + bi(itoi roo) + b2 [TRTi x (nth - boo)] + Ull

N (0, Tn), (6)

where (311 and bi represent, respectively, the main effects of treatment and
initial status on rates of change, and where b2, the parameter of primary
interest, captures the interaction between initial status and treatment on
rates of change.

Figure 3. The Marginal Posterior Distribution of the Initial x Treatment Interaction

Effect (b2)

1 8
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Based on the equation for growth rates in the above level-2 model,

it can be seen that the expected rate of change for STAPP patients (TRTi =

0) is as follows:

E(Ttii I TRTi= 0) = f3io boo).

For NDP patients, the expected rate of change is:

E(Tcli 1 TRTi= 1) = (f3io + bn )+ (bl + b2) (Tcoi boo).

(7)

(8)

In Table III, we see that the mean of the resulting posterior
distribution for b2 takes on a value of -0.137 and that the 95% interval for
b2 includes only negative values (see also Figure 3). Note also that
approximately 98% of the mass of p(b21 y) lies below a value of 0. These
results point strongly to an interaction between initial status and
treatment on rate of change.

Table III: Marginal Posterior Distributions for the Fixed Effects and Variance

Components in Model III

Mean SD 95% Int. Median Prop.>0

Fixed Effects :

Model for Initial Status (no')

Grand Mean (000) .923 .098 (.728, 1.111) .924 1.000

Model for Rates of Change (nii)

STAPP (010) -.073 .017 (-.106,-.041) -.073 .000

NDP/STAPP Contrast (On) .004 .022 (-.039, .048) .004 .570

Initial Status Effect(b1).003 .053 (-.085, .124) -.002 .479

Init. Status x Treatment

(b2) -.137 .071 (-.291,-.012) -.132 .016

Variance Components :

Within-Person Error (02) .057 .015 (.034, .094) .055

Random Effects Variance
for Initial Status (T00) .141 .060 (.060, .290) .129

Random Effects Variance
for Rates of Change (T11) .0008 .0004 (.0002, .0019) .0007
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To help interpret the results of this analysis, we use the resulting
posterior means of the fixed effects to compute expected rates of change
for STAPP patients and for NDP patients whose initial status values are
one standard deviation above or below the grand mean. First, since Too

represents the variance in initial status values around the grand mean,
then (noi - f3oo)= toohr2 represents the grand-mean centered initial status value
for a person whose initial status value is one standard deviation above the
mean. Similarly, (noi - 13,00)= -T001/2 represents the centered initial status
value for a person whose initial status value is one standard deviation
below the grand mean. Since the posterior distribution for Too is somewhat
skewed (see Table III), the median of this distribution (0.129) provides us
with a sensible estimate of Too for the purpose at hand.

For STAPP patients whose initial status is one standard deviation
above average ((noi 1300= (0.129)1/2 = 0.36), the expected rate of change
based on our fitted model is:

E(7cii I TRT, = 0, [no, -1300] =0.36) = -0.073 + 0.003(0.36)

= -0.072. (9)

where -0.073 and 0.003 are the marginal posterior means of 1310 and
respectively.

For NDP patients whose initial status is one standard deviation
above average, the expected rate of change is:

gnu I TRT,-- 1, jnoi boo] = 0.36) =

(-0.073 + 0.004) + (0.003 + [-0.137[)(0.36) = -0.117, (10)

where -0.073, 0.004, 0.003 and -0.137 are the marginal posterior means of
(31o, 1311,bi and b2, respectively.

Thus among patients whose initial status value is one standard
deviation above the grand mean, NDP patients are expected to improve at
an appreciably more rapid rate than STAPP patients. In Figure 4, we see
that after 6 months of treatment, SCL-90 scores are expected to be
approximately .27 points lower for NDP patients than for STAPP patients.

For STAPP patients whose initial status is one standard deviation
below average ((no, 1300) = (0.129)1/2 = -0.36), the expected rate of change
based on our fitted model is:

E(m I TRTi= 0, [noi - Poo] 0.36) = -0.073 + 0.003(-0.36)
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= -0.074. (11)

For NDP patients whose initial status is one standard deviation
below average, the expected rate of change is:

E(mi I TRT 1, [Thoi- Poo] = -0.36) = (-0.073 + 0.004) + (0.003 + [-0.137])(-0.36)

= -0.117. (12)
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(NDP)
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- initial status 1 SD below avg.
(STAPP)

mild (.20 -.40)

asymptomatIc(<.20)

Figure 4. Interaction between Initial Status and Treatment on Rates of Change

As can be seen, the expected rate of change for low initial status
STAPP patients (-0.074) is extremely similar to the expected rate for high
initial status STAPP (-0.072) patients. Moreover, among low initial status
patients, STAPP patients are expected to improve at substantially more

rapid rates than NDP patients (-0.074 versus -0.021). As can be see in
Figure 4, the expected rate of change for low initial status NDP patients is

quite slow. After 6 months of treatment, SCL-90 scores for low initial
status patients are expected to be approximately 0.30 points lower for
STAPP patients than NDP patients.

To study the sensitivity of our results to possible outlying time-
series observations or outlying individuals, we re-analyze the data
employing heavy-tailed distributional assumptions at levels 1 and 2 (i.e., t

distributional assumptions with 4 degrees of freedom): eti a2, 4); Uoi

40, too, 4); and Liu - Tn, 4). The results that we obtain are extremely
similar to those obtained under normality assumptions. The resulting
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marginal posterior mean for the interaction effect (b2) takes on a value of
-0.132, and we obtain a 95% interval for b2 that includes only negative
values (i.e., -0.301, -0.006).

While Models I and II point to virtually no difference in the
effectiveness of STAPP and NDP, Model III points to NDP being more
effective for patients whose initial status values are relatively high and to
STAPP being more effective in the case of patients whose initial status
values are relatively low.

Discussion

An important implication of the above analyses is that the ability to

fit models that contain Initial Status x Treatment interaction terms
encourages us to search for potentially important interactions that might
otherwise go unnoticed. Our model-fitting approach is based on the use
of MCMC techniques, which provide a viable means of obtaining
estimates and standard errors for parameters of interest in numerous
complex modeling settings. A key advantage of utilizing MCMC is that

we are able to estimate coefficients in latent variable regressions directly
as opposed transforming ML estimates of variance components and fixed
effects in standard HMs. Various possible modeling extensions based on

this estimation approach are as follows.

1. As noted above, our MCMC-based approach makes it possible to
specify interactions between initial status and continuous predictors in
modeling rates of change. This, in turn, potentially broadens the kinds of
questions that we are able to address via analyses of the data from
longitudinal educational surveys (e.g., NELS, ECLS), and from
longitudinal studies of educational programs. For example, consider an

intensive longitudinal study of an innovative remedial reading
intervention, and that a key feature of the study is that children are
randomly assigned to various versions of the program that differ in
intensity i.e., in the number of minutes of remedial instruction per week).
Thus, of particular interest are the effects of the intensity of treatment
(INTENSITY) on rates of change, and the issue of whether, for example,
differences in intensity are more consequential for those children who are

most in need of the intervention (i.e., those children with markedly low
initial status values). This implies a model for rates of change such as the

following:



7th, = Pio + 1311 INTENSITYi + bi(noi - Poo) + b2 [INTENSITY, x (rco, Poo)]

+ N (0, til), (13)

In this model, the key parameters of interest (i.e., bi and b2) can be

estimated directly via MCMC.

2. Student progress of course occurs in school settings. Building on
Burstein's work on multilevel analysis (1980), relationships of substantive
importance (e.g., the relationship between initial status and rate of

progress) can vary substantially across key organizational units (e.g.,

classrooms, schools). For example, in some schools, where a student starts
with respect to reading achievement may be extremely consequential in
terms of how rapidly he or she progresses (e.g., those students who start
high might progress rapidly, while those who start low might progress
very slowly). In other schools, however, where a student starts may be
less consequential in terms of how quickly he or she progresses. For
example, in some schools, all children, regardless of their initial status,
may progress rapidly. It therefore becomes important to examine how
differences in various school policies and practices (e.g., differences in
instructional materials, in the allocation of instructional time, in types and
amounts of remedial services) affect the relationship between where
students start and their subsequent rates of progress. This can be
accomplished through the use of three-level HMs, which can be estimated
via our MCMC approach.

3. Our MCMC-estimation strategy can be used in studies in which
primary interest centers on the relationship between growth in different
domains. For example, one can specify and fit models in which rate of
change in word recognition skills is used as a predictor of subsequent rate
of change in reading comprehension.

Our work in this paper has implications for the development of
educational indicators. In particular, examining relationships between
where students start and how rapidly they progress, and examining
interactions involving various student background characteristics (e.g.,
SES, gender), help provide a sense of the kinds of students in a school who
are benefiting and those who are not. This is the focus of a forthcoming
deliverable.
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